# Syntheses of 1-substituted furan-fused 3-sulfolenes and their Diels-Alder reactions 

Takayoshi Suzuki, Hideyuki Fuchii and Hiroaki Takayama *
Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan


#### Abstract

The preparation of 1 -substituted $4 \mathrm{H}, 6 \mathrm{H}$-dihydrothieno[3,4-c]furan 5,5-dioxides and their intermolecular Diels-Alder reactions with typical dienophiles are described. 1-Acetyl-1d and 1-nitro-furansulfolene 1e were prepared by simple new methods. Acetyl and nitro substituents in the furan moiety did little to diminish its Diels-Alder reactivity relative to the corresponding furans. Furthermore, on reaction with dimethyl fumarate, 1-acetylfuransulfolene 1d acted like the corresponding 3,4-dimethylenefuran.


## Introduction

Furansulfolene, $4 \mathrm{H}, 6 \mathrm{H}$-dihydrothieno[3,4-c]furan 5,5-dioxide 1a $(\mathrm{Y}=\mathrm{H})$, appears to be a useful masked bis-diene exhibiting versatility in Diels-Alder reactions. Depending on the reaction conditions and dienophiles, 1a sequentially reacted with the latter to produce four types of cycloadducts. ${ }^{1}$ The 3 -sulfolene function of 1a reacts not only as a s-cis diene in Diels-Alder reactions but also widens the scope of such reactions for the furan moiety to react with dienophiles as a result of its desulfonylation to form a s-cis diene. Thus, the furansulfolene 1a reacts with dienophiles such as dimethyl maleate, dimethyl fumarate and $p$-benzoquinone to give Diels-Alder adducts of furan not accessible under thermal conditions. Scheme 1 illustrates the Diels-Alder reaction of $\mathbf{1 a}$ with dimethyl acetylenedicarboxylate (DMAD), dimethyl maleate (DM) and dimethyl fumarate (DF) under thermal conditions. The formation of a type $\mathbf{C}$ adduct was observed only when 2endo, 3endo-10a (type B) was heated at $150^{\circ} \mathrm{C}$ for 1 h . Treatment of other type B adducts, 4 and $\mathbf{1 0}$, under more drastic conditions gave recovery of starting material.

As a continuation of our studies on the chemistry of furansulfolene for the syntheses of variously substituted multicyclic molecules, we have investigated the reactivity of its furan moiety having substituents at the $\alpha$-position in Diels-Alder reactions. Here we report the preparation of $\mathbf{1 b - e}$ and the results of Diels-Alder reactions.

## Results and discussion

## Modification of the furan ring

Bromination, acetylation and alkylation of furan rings is usually achieved via lithiofuran, ${ }^{2}$ but this was not possible for the furansulfolene $\mathbf{1 a}$ because of the activated $\alpha$-methylene adjacent to the $\mathrm{SO}_{2}$ group. Bromination of 1 a by NBS (1.1 equiv.) in benzene at $100^{\circ} \mathrm{C}$ gave the desired monobromide 1b $(\mathrm{Y}=\mathrm{Br})(24 \%)$ together with a dibromide ( $17 \%$ ) and recovered $\mathbf{1 a}(17 \%)$. The best yield ( $35 \%$ ) of the bromofuransulfolene $\mathbf{1 b}$ was obtained on treating $\mathbf{1 a}$ with $\mathrm{Br}_{2}$-dioxane complex in dioxane. ${ }^{3}$ Since acetylation of furan rings is usually achieved with acetic toluene- $p$-sulfonic anhydride, ${ }^{4}$ we tried initially to prepare this reagent by the reported method from acetyl chloride and toluene-p-sulfonic anhydride, but failed. Thus, reaction of toluene-p-sulfonyl chloride and silver acetate in acetonitrile at $130^{\circ} \mathrm{C}$ for 1 h gave an unsatisfactory yield of the reagent ( ${ }^{1} \mathrm{H}$ NMR measurement) and afforded only $16 \%$ yield of the desired acetylfuransulfolene (the recovery of la was $82 \%)$. In contrast, the facile acetylation of $\mathbf{1 a}$ with acetic toluene- $p$-sulfonic anhydride, prepared conveniently from acetyl chloride and silver toluene-p-sulfonate, in acetonitrile at



3a

4a


5a

Type A
1a $\mathrm{Y}=\mathrm{H} \quad \mathrm{DM}$


8a


9a


10a


11a
Scheme 1
$50^{\circ} \mathrm{C}$ for 9 h gave acetylfuransulfolene $\mathbf{1 d}(\mathrm{Y}=\mathrm{Ac})$ in $80 \%$ yield. The nitration of 1 a with nitronium tetrafluoroborate ${ }^{5}$ in diethyl ether at $0^{\circ} \mathrm{C}$ resulted only in consumption of 1a. A simple method for generating nitronium trifluoromethanesulfonate from nitronium tetrafluoroborate and silver trifluoromethanesulfonate in the presence of $\mathbf{1 a}$ at $-40^{\circ} \mathrm{C}$ afforded a $37 \%$ yield of the desired nitrofuransulfolene $1 \mathrm{e}\left(\mathrm{Y}=\mathrm{NO}_{2}\right)$.

Table 1 Reaction of furansulfonenes $\mathbf{1 b}$-c with dienophiles at $120^{\circ} \mathrm{C}$

| No. | Sulfolene | Dienophile | React. time (h) | Products (isolated yield. \% $\%$ ) |  |  |  | Total yield ( $\%$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Type A | Type B | Type C | Others |  |
| 1 | 1b ( $\mathrm{Y}=\mathrm{Br}^{\text {r }}$ ) | DMAD ${ }^{\text {a }}$ | 4.5 | $\begin{aligned} & \mathbf{3 b} \\ & (58) \end{aligned}$ | $\begin{aligned} & \mathbf{4 b} \\ & (17) \end{aligned}$ |  |  | 75 |
| 2 | 1c ( $\mathrm{Y}=\mathrm{Ar} \mathrm{r}^{\text {c }}$ ) | DMAD | 4.5 | $\begin{aligned} & 3 c \\ & (31) \end{aligned}$ | $4 c$ <br> (27) |  |  | 58 |
| 3 | Id ( $\mathrm{Y}=\mathrm{Ac}$ ) | DMAD | 6.0 | 3d <br> (14) | $4 d$ <br> (57) | 5d <br> (16) |  | $\begin{aligned} & 87 \\ & (10)^{b} \end{aligned}$ |
| 4 | le ( $\mathrm{Y}=\mathrm{NO}_{2}$ ) | DMAD | 24.0 |  |  |  | 7 e (14) | 14 |
| 5 | 1b | DM ${ }^{\text {d }}$ | 22.0 | 9b <br> (cis-endo 49) <br> (cis-e.vo 4) |  |  |  | 53 |
| 6 | 1d | DM | 24.0 | 9d <br> (cis-endo 13) <br> (cis-e.o 4) |  |  |  | $\begin{aligned} & 17 \\ & (70)^{b} \end{aligned}$ |
| 7 | 1e | DM | 24.0 | 9 e <br> (cis-endo 10) |  |  |  | 10 |
| 8 | 1b | DF ${ }^{e}$ | 20.0 | 9b <br> (2endo,3exo 13) (2e..o,3endo 7) |  | $\begin{aligned} & 11 \mathrm{~b} \\ & (11) \end{aligned}$ |  | 31 |
| 9 | 1d | DF | 20.0 | 9d <br> (2endo.3exo 7) <br> (2exo,3endo 5) |  | $\begin{aligned} & \text { 11d } \\ & (10) \end{aligned}$ |  | $\begin{aligned} & 22 \\ & (73) \end{aligned}$ |
| 10 | 1e | DF | 24.0 |  |  | $\begin{aligned} & 11 e \\ & \text { (11) } \end{aligned}$ |  | 11 |

${ }^{a} \mathrm{DMAD}=$ dimethyl acetylenedicarboxylate. ${ }^{b}$ Recovery of the furansulfolene. ${ }^{c} \mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \cdot{ }^{d} \mathrm{DM}=$ dimethyl maleate. ${ }^{e} \mathrm{DF}=$ dimethyl fumarate.

The tetrakis(triphenylphoshine)palladium(0)-catalysed crosscoupling of $\mathbf{1 b}$ with $p$-methoxyphenyl(trimethyl)tin ${ }^{6}$ in dioxane at $105^{\circ} \mathrm{C}$ proceeded smoothly to afford phenylfuransulfolene 1c ( $\mathrm{Y}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ ) in $57 \%$ yield. The structures of all new furansulfolenes were confirmed from their spectral results.

## Diels-Alder reaction of the furansulfolenes with DMAD

The Diels-Alder reaction of the bromofuransulfolene 1 b with DMAD (3 equiv.) took place at $120^{\circ} \mathrm{C}$ (benzene; sealed tube) to afford two types of cycloadducts, type A $\mathbf{3 b}(58 \%)$ and type B 4b ( $17 \%$ ) in $75 \%$ total yield (Table entry 1).

As compared with the 1 h reaction of the non-substituted furansulfolene 1a with DMAD, the reaction of $\mathbf{1 b}$ at the same temperature needed $6 \mathrm{~h} .{ }^{1}$ A similar reaction of the phenylsubstituted 1c with DMAD produced the same type adducts, 3 c and $\mathbf{4 c}$, containing the hoped for skeletal features of lignan lactones of the podophyllotoxin series (entry 2). In striking contrast to reports that furans containing electron-withdrawing groups, such as furfural and 2-acetylfuran, are poor dienes in Diels-Alder reactions, ${ }^{7}$ we found that 1 -acetylfuransulfolene $1 \mathbf{1 d}$ was very reactive towards DMAD giving not only 3d and $\mathbf{4 d}$ but also the unexpected monocycloadduct 5 d in high total yield (entry 3). The formation of the type $\mathbf{C}$ adduct $\mathbf{5 d}$ under these reaction conditions $\left(120^{\circ} \mathrm{C}, 6 \mathrm{~h}\right)$ was of interest because the isolated type $\mathbf{B}$ adduct $4 d$ failed to undergo the retro-DielsAlder reaction to afford the type A adduct 3d or the type $\mathbf{C}$ adduct 5 d under more drastic conditions $\left(150^{\circ} \mathrm{C}\right.$ for $2 \mathrm{~h}, 180^{\circ} \mathrm{C}$ for 2 h and $200^{\circ} \mathrm{C}$ for 2 h ). In these reactions, only slow decomposition was observed and $4 \mathbf{d}$ was recovered $(86 \%)$. The treatment of $5 \mathbf{d}$ with DMAD ( 1.5 equiv.) in benzene at $120^{\circ} \mathrm{C}$ for 6 h (sealed tube) gave only recovery of 5d. Treatment of the type A adduct 3 d with DMAD ( 1.5 equiv.) in benzene at $120^{\circ} \mathrm{C}$ for 6 h (sealed tube) gave the type $\mathbf{C}$ adduct $5 \mathrm{~d}(21 \%)$ and the type B adduct $4 \mathbf{d}\left(36^{\circ} \%\right)$. Furthermore, the treatment of 3 d in benzene at $120^{\circ} \mathrm{C}$ for 6 h (sealed tube) afforded 5 d in $73 \%$ yield. Formation of 5d, therefore, may be rationalized in terms of a reaction pathway via 3d; first, two molecules of 3d undergo an intermolecular Diels-Alder reaction to afford a cyclic dimer, which is then converted into a linear dimer 7; a retro-Diels-


Scheme 2

Alder reaction of this linear dimer then affords a type $\mathbf{C}$ adduct 5d (Scheme 2). $\dagger$

Incorporation of an acetyl group into the bridgehead of the type A adduct made the endocyclic olefin a favourable dienophile. Similarly, the nitrofuransulfolene 1e resulted in a linear dimer 7e (entry 4), but the reaction was complex. The carbon framework of 7 e was confirmed on the basis of its ${ }^{13} \mathrm{C}$ NMR spectrum; 4 carbonyl carbons ( $\delta 169.9,167.4,167.3$ and 161.2

[^0]ppm), 10 quaternary carbons ( $\delta 161.1,150.9,149.5,149.4$, $142.7,140.6,132.6,131.1,122.6$ and 121.8 ppm$), 2$ methyne carbons ( $\delta 147.6$ and 81.2 ppm ), 4 methyl carbons ( $\delta 53.2,53.1$, 52.6 and 50.9 ppm ) and 4 methylene carbons ( $\delta 27.5,27.3,26.8$ and 26.3 ppm ). Its ${ }^{1} \mathrm{H}$ NMR spectrum showed 1 aromatic proton as a singlet at $\delta 8.08 \mathrm{ppm}$, the bridgehead proton as a singlet at $\delta 5.97 \mathrm{ppm}$, as well as signals for the remaining 12 methyl and 8 methylene protons.

## Diels-Alder reaction of the furansulfolenes with ethylenedicarboxylate

With dimethyl maleate as a dienophile, the bromofuransulfolene 1 b reacted at $120^{\circ} \mathrm{C}$ for 22 h to give two isomers of type A adduct, endo- and exo-9b, in $53 \%$ total yield (entry 5). At the same temperature, the acetylfuransulfolene 1d gave 9 d in $56.6 \%$ yield (based on the consumption of 1d) (entry 6). These results showed that bromo and acetyl substituents in the furansulfolene did not prevent the Diels-Alder reaction of the furan with dimethyl maleate. The reaction of the nitrofuransulfolene $1 \mathbf{e}$ with dimethyl maleate was complex and gave endo-9e ( $10 \%$ ) (entry 7). Interestingly, in contrast to the reaction of dimethyl maleate these furansulfolenes reacted with dimethyl fumarate to give the adducts 11. These results were in contrast to our experience with the type B adduct 10a obtained from 1a and dimethyl fumarate which was resistant to retro-Diels-Alder reactions, the formation of a type $\mathbf{C}$ adduct not being observed. Cycloaddition of the acetylfuransulfolene $\mathbf{1 d}$ to dimethyl fumarate was slow but gave the type C adduct 11d ( $37 \%$ yield based on the consumption of $1 \mathbf{d}$ ) and a type A adduct $9 \mathrm{~d}(44 \%$ yield based on the consumption of 1d). Similarly, 1b and dimethyl fumarate gave 9b and 11b. Furthermore, the nitro-substituted type C adduct 11 e was obtained in $11 \%$ yield (entry 10 ). Treatment of the isolated 9d with dimethyl fumarate at the same temperature gave only recovery of starting material. This result suggested that the type $\mathbf{C}$ adduct $11 d$ was not formed via a retro-Diels-Alder product of the corresponding type $\mathbf{B}$ adduct but, rather, by reaction of the sulfolene moiety with dimethyl fumarate (Scheme 3). $\ddagger$


In summary, we have developed new and simple methods for the acetylation and nitration of furansulfolene. The acetyl and nitro electron-withdrawing substituents in the furan moiety diminished its reactivity toward DMAD very little compared with the corresponding furans. The key to a favourable equilibrium for product formation lies in rapid $\mathrm{SO}_{2}$ extrusion from the initially formed adducts 4 . Acetyl and nitro substituents in type $\mathbf{A}$ adducts made the endocyclic olefins more powerful than DMAD, and this led to the formation of type $\mathbf{C}$ adducts. In the reaction with dimethyl fumarate, and 1 -substituted furansulfolenes acted like the corresponding 3,4-dimethylenefurans. ${ }^{8}$

## Experimental

The melting points (Yamaco Micro Melting Point apparatus) are uncorrected. The ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR

[^1]spectra were determined for $\mathrm{CDCl}_{3}$ solutions containing ca. $1 \%$ TMS as an internal standard with a JEOL GSX-400 spectrometer; $J$ values are given in Hz . Column chromatography was performed on silica gel (Wakogel C-200). All reactions were conducted under an argon atmosphere unless otherwise stated.

## Bromination of 1a

To a solution of $1 \mathbf{a}(50.0 \mathrm{mg}, 0.32 \mathrm{mmol})$ in dioxane ( $1 \mathrm{~cm}^{3}$ ) was added $\mathrm{Br}_{2}$-dioxane complex ( $87 \mathrm{mg}, 1.1$ equiv.) and the mixture was heated at $50^{\circ} \mathrm{C}$ for 1.5 h . It was then diluted with $\mathrm{CHCl}_{3}$, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residual oil was chromatographed on silica gel. Elution with ethyl acetate-hexane ( $1: 4$ ) afforded compound $\mathbf{1 b}$ ( $26.5 \mathrm{mg}, 35.0 \%$ ) as a colourless oil and $1 \mathbf{1 a}(14 \%)$.

1-Bromo-4H,6H-thieno[3,4-c] firran 5,5-dioxide 1b: $\delta_{\mathrm{H}} 4.06$ $(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 4.21(2 \mathrm{H}, \mathrm{d}, J 1.53,4-\mathrm{H})$ and $7.48(1 \mathrm{H}, \mathrm{t}, J 1.53$, $3-\mathrm{H}) ; \delta_{\mathrm{C}} 51.22(\mathrm{t}, 4-\mathrm{C}), 52.35(\mathrm{t}, 6-\mathrm{C}), 117.09(\mathrm{~s}, 6 \mathrm{a}-\mathrm{C}), 118.01$ (s, 3a-C or 1-C), 118.93 (s, 1-C or $3 \mathrm{a}-\mathrm{C}$ ) and 139.41 (d, 3-C); $\mathrm{m} /=$ $238,236\left(\mathrm{M}^{+}, 3.09,3.13^{\prime \prime}\right)$ ), 174, $172\left(\mathrm{M}^{+}-\mathrm{SO}_{2}, 17.40,17.05 \%\right)$ [Found (HRMS): m/z 235.9165. Calc. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{BrS}$ : 235.9142].

## Cross-coupling of the dioxide 1b

$p$-Methoxyphenyl(trimethyl)tin, obtained by $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]-$ catalysed reaction of $p$-iodoanisole and hexamethylditin (2 equiv.) in toluene at $115^{\circ} \mathrm{C}$ for 15 h , was used without purification. To a solution of $\mathbf{1 b}(24 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dioxane ( 1 $\mathrm{cm}^{3}$ ), $p$-methoxyphenyl(trimethyl)tin ( $60 \mathrm{mg}, 2$ equiv.) and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ were added and the mixture was heated and stirred at $105^{\circ} \mathrm{C}$ for 24 h in a sealed tube. The mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a short column of aluminum oxide and evaporated to give a residue which was chromatographed on silica gel. Elution with ethyl acetate-hexane ( $1: 4$ ) gave compound $1 \mathrm{c}(15 \mathrm{mg}, 57 \%)$ as a viscous yellow oil.

1-(4-Methoxyphenyl)-4H,6H-thieno[3,4-c] firran 5,5-dioxide 1c: $\delta_{\mathrm{H}} 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.19(2 \mathrm{H}, \mathrm{d}, J 1.60,4-\mathrm{H}), 4.33(2 \mathrm{H}$, $\mathrm{s}, 6-\mathrm{H}), 6.97(2 \mathrm{H}, \mathrm{d}, J 9.0$, benzene ring H$), 7.42(1 \mathrm{H}, \mathrm{t}, J 1.60$, $3-\mathrm{H})$ and $7.47(2 \mathrm{H}, \mathrm{d}, J 9.0$, benzene ring H$) ; m /=264\left(\mathrm{M}^{+}\right.$, $14.70 \%)$ and $200\left(\mathrm{M}^{+}-\mathrm{SO}_{2}, 68.48 \%\right)$ [Found (HRMS): $m /=$ 264.0457. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}: 264.0456\right]$.

## Acetylation of 1a

To a solution of TsOAg ( $558 \mathrm{mg}, 2 \mathrm{mmol}$ ) in dry $\mathrm{CH}_{3} \mathrm{CN}(2$ $\mathrm{cm}^{3}$ ) was added acetyl chloride ( $0.142 \mathrm{~cm}^{3}, 2$ equiv.) and the mixture, in a sealed tube, was heated at $130^{\circ} \mathrm{C}$ for 1 h . It was then allowed to cool to room temperature and $1 \mathrm{a}(158 \mathrm{mg}$, I mmol ) was added to it. The mixture was stirred and heated at $50^{\circ} \mathrm{C}$ for 9 h after which it was diluted with $\mathrm{CHCl}_{3}$, washed with sat. aqueous $\mathrm{NaHCO}_{3}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was purified by silica gel chromatography ( $20 \%$ ethyl acetate in hexane) to give the desired product 1d ( $160 \mathrm{mg}, 80 \%$ ) as colourless plates and $\mathbf{1 a}(14 \%)$.

1-Acetyl-4H,6H-thieno[3,4-c] furan 5,5-dioxide 1d: mp 132.0$134^{\circ} \mathrm{C}$ (benzene); $\delta_{\mathrm{H}} 2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.18(2 \mathrm{H}, \mathrm{d}, J 1.53$, $4-\mathrm{H}), 4.38(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $7.53(1 \mathrm{H}, \mathrm{t}, J 1.53,3-\mathrm{H}) ; \delta_{\mathrm{C}} 26.19$ (q, $\mathrm{CH}_{3} \mathrm{CO}$ ), $51.01(\mathrm{t}, 4-\mathrm{C}), 52.91(\mathrm{t}, 6-\mathrm{C}), 119.57(\mathrm{~s}, 6 \mathrm{a}-\mathrm{C}$ or $3 \mathrm{a}-\mathrm{C}$ ), 123.52 (s, 3a-C or $6 \mathrm{a}-\mathrm{C}$ ), 139.35 (d, 3-C), 147.35 (s, 1-C) and $187.25\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right) ; m /=200\left(\mathrm{M}^{+}, 5.59 \%\right)$ and 136 $\left(\mathrm{M}^{+}-\mathrm{SO}_{2}\right.$, base $) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1680,1330,1130$ and 928 [Found (HRMS): m/= 200.0140. Calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}$ : 200.0143].

## Nitration of 1a

To a solution of nitronium tetrafluoroborate ( $84 \mathrm{mg}, 1.0$ equiv.) in dry acetonitrile ( $1 \mathrm{~cm}^{3}$ ) at $-40^{\circ} \mathrm{C}$ were added 1a ( 100 mg , 0.63 mmol ) and silver trifluoromethanesulfonate ( $162 \mathrm{mg}, 1.0$ equiv.). After being stirred at the same temperature for 1.5 h , the mixture was diluted with $\mathrm{CHCl}_{3}$, washed with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Column
chromatography of the residue on silica gel yielded compound $1 \mathrm{e}(47 \mathrm{mg}, 37.0 \%)$ as yellow plates. When the reaction temperature was higher than $-40^{\circ} \mathrm{C}$, the yield of 1 e was lower $\left(0^{\circ} \mathrm{C}\right.$, $\left.10 \% ;-20^{\circ} \mathrm{C}, 15 \%\right)$. Nitration of 1 a with nitronium tetrafluoroborate in ether at $0^{\circ} \mathrm{C}$ was complex and failed to afford 1 e .

1-Nitro-4H,6H-thieno[3,4-c] firan 5,5-dioxide 1e: 194.0$196.0^{\circ} \mathrm{C}$ (from ethyl acetate); $\delta_{\mathrm{H}} 4.27(2 \mathrm{H}, \mathrm{d}, J 1.52,4-\mathrm{H}), 4.50$ $(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $7.57(1 \mathrm{H}, \mathrm{t}, J 1.52,3-\mathrm{H}) ; \delta_{\mathrm{C}} 51.90(\mathrm{t}, 4-\mathrm{C})$, $52.98(\mathrm{t}, 6-\mathrm{C}), 121.49$ (s, 3a-C or $6 \mathrm{a}-\mathrm{C}$ ), 122.63 ( $\mathrm{s}, 6 \mathrm{a}-\mathrm{C}$ or $3 \mathrm{a}-\mathrm{C}$ ) and 141.20 (d, 3-C); 1-C singlet signal was not observed; $m / z$ $203\left(\mathrm{M}^{+}, 1.07 \%\right), 139\left(\mathrm{M}^{+}-\mathrm{SO}_{2}, 5.94 \%\right) ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1530, 1370, 1345, 1135, 1010 and 840 [Found (HRMS): m/z 202.9866. Calc. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{NS}: 202.9888$ ].

## Diels-Alder reaction of 1 lb with DMAD

A solution of $\mathbf{1 b}(30 \mathrm{mg}, 0.13 \mathrm{mmol}), 4-m e t h o x y p h e n o l(5 \mathrm{mg})$ and DMAD ( $0.047 \mathrm{~cm}^{3}, 3$ equiv.) in dry benzene ( $1 \mathrm{~cm}^{3}$ ) was heated at $120^{\circ} \mathrm{C}$ for 4.5 h in a sealed tube. After concentration of the mixture, the residue was purified by silica gel column chromatography (hexane-AcOEt, $4: 1$ ) to give compound 3b ( $23 \mathrm{mg}, 58 \%$ ) and compound 4 bb ( $10 \mathrm{mg}, 17 \%$ ) as yellow oils.
Dimethyl 1-bromo-5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene-2,3-dicarboxylate 3b; $\delta_{\mathrm{H}} 3.80$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}$ ), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 5.36[1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}=\mathrm{C}(5$ or 6$)], 5.46$ [ $1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}(5$ or 6$)], 5.51[1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{H}=\mathrm{C}(5$ or 6$)], 5.62$ [ $1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}=\mathrm{C}(5$ or 6$)]$ and $5.64[1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}=\mathrm{C}(5$ or 6$)$ ]; $\delta_{\mathrm{C}} 52.7\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 52.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 82.4(\mathrm{~d}, 4-\mathrm{C}), 106.3$ [ $\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}(5$ or 6$\left.)\right], 108.8$ [ $\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}(5$ or 6$\left.)\right], 138.6$ (s, 2-, 3-, 5 - or $6-\mathrm{C}$ ), 139.7 ( $\mathrm{s}, 2-, 3-, 5$ - or $6-\mathrm{C}$ ), 141.9 (s, 2-, 3-, $5-$ or $6-\mathrm{C}$ ), 147.1 (s, 2-, $3-$, $5-$ or $6-\mathrm{C}$ ), 160.8 ( $\mathrm{s}, \mathrm{COOMe}$ ), 162.7 (s, COOMe). The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ showed only four singlet signals for the quaternary carbons of the ring, that for $1-\mathrm{C}-\mathrm{Br}$ probably not being observed; $m / \approx 316,314\left(\mathrm{M}^{+}, 0.29\right.$, $0.32 \%), 257,255\left(\mathrm{M}^{+}-\mathrm{COOMe}, 4.19,4.17 \%\right)$ and 235 ( $\mathrm{M}^{+}-\mathrm{Br}$ ) [Found (HRMS): $m / z$ 315.6784. Calc. for $\left.\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{Br}: 315.9769\right]$.
Tetramethyl 1-bromo-1,4-epoxy-1,4,5,8-tetrahydronaphtha-lene-2,3,6,7-tetracarboxylate $\mathbf{4 b}$ : $\delta_{\mathrm{H}} 3.14-3.16(1 \mathrm{H}, \mathrm{m}, 5$ - or 8 H), 3.18-3.22 ( $1 \mathrm{H}, \mathrm{m}, 5-$ or $8-\mathrm{H}), 3.42-3.45$ ( $1 \mathrm{H}, \mathrm{m}, 5-$ or $8-$ H), $3.47-3.50(1 \mathrm{H}, \mathrm{m}, 5-$ or $8-\mathrm{H}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.81$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{OCO}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $5.57(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}$ ); $\delta_{\mathrm{C}} 26.3$ (t, $5-\mathrm{C}$ or $8-\mathrm{C}$ ), 27.7 ( $\mathrm{t}, 5-\mathrm{C}$ or $8-\mathrm{C}$ ), 52.5 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.7 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.8 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.9 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ) and $83.7(\mathrm{~d}, 4-\mathrm{C})$; although a singlet for $1-\mathrm{C}-\mathrm{Br}$ was not observed, 11 singlets for 7 quaternary carbons of the ring and 4 carbonyl carbons were observed as follows: 132.1 (s), 132.5 (s), 145.8 (s), 146.6 (s), 149.2 (s), 156.0 (s), 161.9 (s), 163.7 (s), $167.8(\mathrm{~s}), 168.1(\mathrm{~s})$ and $208.3(\mathrm{~s}) ; \mathrm{m} /=427,425\left(\mathrm{M}^{+}-\mathrm{OMe}\right.$, $3.15,3.25 \%)$, $346\left(\mathrm{M}^{+}-\mathrm{OMe}-\mathrm{Br}, 4.32 \%\right)$, (CI) 458 and 456 $\left(\mathrm{M}^{+}\right)$[Found (HRMS): $m /=424.9709$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{9} \mathrm{Br}$ : 424.9871].

## Diels-Alder reaction of $\mathbf{1 c}$ with DMAD

A solution of $1 \mathbf{c}$ ( $20 \mathrm{mg}, 0.08 \mathrm{mmol}$ ), 4-methoxyphenol ( 2 mg ) and DMAD ( $0.028 \mathrm{~cm}^{3}, 3$ equiv.) in dry benzene ( $1 \mathrm{~cm}^{3}$ ) was heated at $120^{\circ} \mathrm{C}$ for 4 h in a sealed tube. After concentration, the residue was purified by silica gel column chromatography (hexane-AcOEt, 9:1) to give compound 3c ( 8 mg , yield $31 \%$ ) and compound 4 c ( $10 \mathrm{mg}, 27 \%$ ) as yellow oils.
Dimethyl 1-(4'-methoxyphenyl)-5,6-dimethylidene-7-oxa-bicyclo[2.2.1]hept-2-ene-2,3-dicarboxylate 3c: $\delta_{\mathrm{H}} 3.78$ ( $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 5$ singlets for $4-\mathrm{H}$ and $\mathrm{CH}_{2}=\mathrm{C}(5)$ and $\mathrm{CH}_{2}=\mathrm{C}(6)$ were observed as follows: $5.24(1 \mathrm{H}, \mathrm{s}), 5.35(1 \mathrm{H}, \mathrm{s}), 5.44(1 \mathrm{H}, \mathrm{s}), 5.54(1 \mathrm{H}, \mathrm{s}), 5.63$ $(1 \mathrm{H}, \mathrm{s}), 6.94(2 \mathrm{H}, \mathrm{d}, J 8.0$, benzene ring) and $7.45(2 \mathrm{H}, \mathrm{d}, J$ 8.0 , benzene ring); $m /=342\left(\mathrm{M}^{+}, 12.23 \%\right)$, $311\left(\mathrm{M}^{+}-\mathrm{OMe}\right.$, $1.27 \%$ ).
Tetramethyl 1,4-epoxy-(4'-methoxyphenyl)-1,4,5,8-tetra-hydronaphthalene-2,3,6,7-tetracarboxylate 4c: $\delta_{\mathrm{H}} 3.20(1 \mathrm{H}, \mathrm{m}$, 5 - or $8-\mathrm{H}$ ), $3.32(1 \mathrm{H}, \mathrm{m}, 5$ - or $8-\mathrm{H}), 3.48(1 \mathrm{H}, \mathrm{m}, 5$ - or $8-\mathrm{H})$,
$3.62(1 \mathrm{H}, \mathrm{m}, 5-$ or $8-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.76(3 \mathrm{H}$ $\mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$ ), 3.79 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$ ), $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$, $3.83(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 5.66(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 6.93(2 \mathrm{H}, \mathrm{d}, J 9.2$, benzene ring) and $7.36\left(2 \mathrm{H}, \mathrm{s}, J 9.2\right.$, benzene ring); $m / z 484\left(\mathrm{M}^{+}\right.$, $14.34 \%), 453\left(\mathrm{M}^{+}-\mathrm{OMe}, 5.34 \%\right)$ and $425\left(\mathrm{M}^{+}-\mathrm{COOMe}\right.$, $1.01 \%$ ).

## Diels-Alder reaction of 1d with DMAD

A solution of 1d ( $50 \mathrm{mg}, 0.25 \mathrm{mmol}$ ), 4-methoxyphenol ( 5 mg ) and DMAD ( $0.092 \mathrm{~cm}^{3}, 3$ equiv.) in dry benzene ( $1 \mathrm{~cm}^{3}$ ) was heated at $120^{\circ} \mathrm{C}$ for 6 h in a sealed tube. After concentration, the residue was purified by silica gel column chromatography (hexane-AcOEt, 4:1) to give as yellow oils 3d ( $10 \mathrm{mg}, 14 \%$ ), $\mathbf{4 d}$ $(60 \mathrm{mg}, 57 \%)$ and $\mathbf{5 d}(11 \mathrm{mg}, 16 \%)$ together with recovered $\mathbf{1 d}$.
Dimethyl 1-acetyl-5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene-2,3-dicarboxylate 3d: $\delta_{\mathrm{H}} 2.31$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$ ), 3.76 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}$ ), $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$; 5 singlets for $4-\mathrm{H}$ and $\mathrm{CH}_{2}=\mathrm{C}(5)$ and $\mathrm{CH}_{2}=\mathrm{C}(6)$ were observed as follows: 5.28 $(1 \mathrm{H}, \mathrm{s}), 5.40(1 \mathrm{H}, \mathrm{s}), 5.46(1 \mathrm{H}, \mathrm{s}), 5.51(1 \mathrm{H}, \mathrm{s})$ and $5.53(1 \mathrm{H}$, $\mathrm{s}) ; \delta_{\mathrm{c}} 26.4\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 52.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 52.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right)$, 82.4 (d, 4-C), 96.3 (s, I-C), 106.2 [t, $\mathrm{CH}_{2}=\mathrm{C}(5$ or 6$\left.)\right], 106.3$ [ $\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}(5$ or 6 )]; 4 singlets for the 4 quaternary carbons in the ring were observed as follows: 137.8 (s), 139.5 (s), 139.6 (s) and $146.5(\mathrm{~s}) ; 161.3(\mathrm{~s}, \mathrm{CO}), 163.5(\mathrm{~s}, \mathrm{CO})$ and $201.2(\mathrm{~s}, \mathrm{CO})$; $m / \approx 235\left(\mathrm{M}^{+}-\mathrm{Ac}, 9.94 \%\right), 176\left(\mathrm{M}^{+}-\mathrm{Ac}-\mathrm{COOMe}, 18.36 \%\right)$ and (CI) $278\left(\mathrm{M}^{+}\right)$[Found (HRMS): m/z 235.0602. Calc. for $\left.\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{5}: 235.0606\right]$.
Tetramethyl 1-acetyl-1,4-epoxy-1,4,5,8-tetrahydronaphtha-lene-2,3,6,7-tetracarboxylate 4 d : $\delta_{\mathrm{H}} 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.32$ ( $4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $8-\mathrm{H}$ ), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.79(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{OCO}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $5.61(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}) ; \delta_{\mathrm{C}} 26.8(\mathrm{t}, 5-\mathrm{C}$ or $8-\mathrm{C}), 26.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 27.3$ (t, 8-C or $5-\mathrm{C}$ ), 52.4 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.5 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.6 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.7 ( $\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}$ ), $84.4(\mathrm{~d}, 4-\mathrm{C})$ and 98.9 (s, $1-\mathrm{C}$ ); 6 singlets for $6 \mathrm{sp}^{2}$ carbons of the ring were observed as follows: 131.4 (s), 133.3 (s), 144.2 (s), 146.8 (s), 148.6 (s) and 154.9 (s); 5 singlets for carbonyl carbons were observed as follows: 162.3 (s), 163.2 (s), 167.5 (s), 167.9 (s) and 201.9 (s); m/z 389 $\left(\mathrm{M}^{+}-\mathrm{OMe}, \quad 1.89 \%\right)$ and $346\left(\mathrm{M}^{+}-\mathrm{OMe}-\mathrm{Ac}, \quad 1.89 \%\right)$ [Found (HRMS): $m / z 389.0869$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{9}: 389.0871$ ].

Dimethyl 1-acetyl-4,7-dihydrobenzo[c]furan-5,6-dicarboxylate 5 d : $\delta_{\mathrm{H}} 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.55(2 \mathrm{H}, \mathrm{d}, J 1.22,4-\mathrm{H}), 3.82$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}$ ), $3.83(2 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $7.37(1 \mathrm{H}, \mathrm{t}, J 1.22,3-\mathrm{H}) ; \delta_{\mathrm{C}} 22.2(\mathrm{t}, 4-\mathrm{C}), 25.2(\mathrm{t}, 7-\mathrm{C}), 26.4$ (q, $\mathrm{CH}_{3} \mathrm{CO}$ ), $52.4\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 52.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 120.0(\mathrm{~s}$, $3 \mathrm{a}-\mathrm{C}$ or $6 \mathrm{a}-\mathrm{C}$ ), 125.6 ( $\mathrm{s}, 6 \mathrm{a}-\mathrm{C}$ or $3 \mathrm{a}-\mathrm{C}$ ); 3 singlets for $1-$ and 5 and 6-C were observed as follows: 131.1 (s), 133.6 (s) and 133.7 (s) and 140.1 (d, 3-C); 3 carbonyl carbons were observed as follows: $167.8(\mathrm{~s}), 168.0(\mathrm{~s})$ and $188.3(\mathrm{~s}) ; \mathrm{m} /=278\left(\mathrm{M}^{+}, 5.86 \%\right)$, 219 ( $\mathrm{M}^{+}$- COOMe, 29.31\%) [Found (HRMS): 278.0765. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$ : 278.0789].

## Diels-Alder reaction of 1 e with DMAD

A solution of $1 \mathrm{e}(43 \mathrm{mg}, 0.21 \mathrm{mmol})$, 4-methoxyphenol ( 5 mg ) and DMAD ( $0.077 \mathrm{~cm}^{3}, 3$ equiv.) in dry benzene ( $1 \mathrm{~cm}^{3}$ ) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 24 h and then concentrated. The residue was purified by silica gel column chromatography (hexane-AcOEt, $9: 1$ ) to give 7 e ( $6 \mathrm{mg}, 14 \%$ ) as a yellow oil.

Tetramethyl $\quad 5,10$-epoxy-1,n-dinitro-4,4a,5,6,9,10,10a,11-octahydroanthro[2,3-c]furan-4a, 7,8,10a-tetracarboxylate 7e $(n=5$ or 10$): \delta_{\mathrm{H}} 3.30(2 \mathrm{H}, \mathrm{m}, 6-$ or $9-\mathrm{H}), 3.59(2 \mathrm{H}, \mathrm{m}, 6-$ or $9-$ H), $3.75\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO} \times 2\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.83$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.90(4 \mathrm{H}, \mathrm{s}, 4-\mathrm{and} 11-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{s}, 5-$ or $10-\mathrm{H}$ ) and $8.08(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}} 26.3(\mathrm{t}, 4-, 6-, 9-$ or $11-\mathrm{C})$, $26.8(\mathrm{t}, 4-, 6$-, 9 - or 11-C), $27.3(\mathrm{t}, 4-, 6-, 9-$ or $11-\mathrm{C}), 27.5(\mathrm{t}, 4-$ 6 -, 9 - or $11-\mathrm{C}$ ), $50.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 52.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 53.1(\mathrm{q}$, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 53.2 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 81.2 (d, 5 - or $10-\mathrm{C}$ ), 147.6 (d, $3-$ C); 4 carbonyl carbons and 10 quaternary carbons had signals as described in the text; $m /=420\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}, 3.28 \%\right), 374$
$\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}-\mathrm{NO}_{2}, 7.71 \%\right)$ and (CI) $580\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$ [Found (HRMS): m/: 420.0756. Calc. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{14} \mathrm{~N}_{2}$ : 420.0804].

## Diels-Alder reaction of $\mathbf{1 b}$ with dimethyl maleate

A solution of $\mathbf{1 b}(50 \mathrm{mg}, 0.21 \mathrm{mmol}), 4-m e t h o x y p h e n o l(5 \mathrm{mg})$ and dimethyl maleate ( $0.079 \mathrm{~cm}^{3}, 3$ equiv.) in dry benzene ( 1 $\mathrm{cm}^{3}$ ) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 22 h after which it was concentrated. The residue was purified by silica gel column chromatography (hexane-AcOEt, 4:1) to give cis-endo-9b (32.3 $\mathrm{mg}, 48 \%)$ and cis-exo- $9 \mathrm{~b}(2.9 \mathrm{mg}, 4 \%)$ as colourless oils.

Dimethyl 1-bromo-5,6-dimethylidene-7-oxabicyclo[2.2.1]-heptane-2endo, 3endo-dicarboxylate cis-endo-9b: $\delta_{\mathrm{H}} 3.60(1 \mathrm{H}, \mathrm{d}$, $J$ 12.0, 2-H), $3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.68$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}$ ), 3.71 ( $1 \mathrm{H}, \mathrm{dd}, J 12.0,5.5,3-\mathrm{H}$ ), 5.04 ( $1 \mathrm{H}, \mathrm{d}, J 5.5,4-\mathrm{H}$ ), 5.10 [ 1 $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}(5$ or 6$\left.)\right], 5.45\left[1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}(5\right.$ or 6$\left.)\right], 5.47[1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}(5$ or 6$\left.)\right]$ and $5.63\left[1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}(5\right.$ or 6$)$ ]; $\delta_{\mathrm{c}} 50.2$ (d, $3-\mathrm{C}), 51.9\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 52.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 56.6(\mathrm{~d}, 2-\mathrm{C})$, 80.8 (d, 4-C), 93.2 (s, 1-C), 105.4 [t, $\mathrm{CH}_{2}=\mathrm{C}(5)$ ], 108.8 [t, $\left.C \mathrm{H}_{2}=\mathrm{C}(6)\right], 141.5(\mathrm{~s}, 5-\mathrm{C}), 144.5(\mathrm{~s}, 6-\mathrm{C}), 168.1(\mathrm{~s}, \mathrm{CO})$ and 168.5 ( $\mathrm{s}, \mathrm{CO}$ ); $\mathrm{m} / \mathrm{z} 318,316\left(\mathrm{M}^{+}, 3.62,3.64 \%\right), 287,265$ ( $\mathrm{M}^{+}$- OMe, 5.80, $5.94 \%$ ) and $237\left(\mathrm{M}^{+}-\mathrm{Br}, 15.71 \%\right)$ [Found (HRMS): $m /=315.9911$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{Br}$ : 315.9945].
Dimethyl 1-bromo-5,6-dimethylidene-7-oxabicyclo[2.2.1]-heptane-2exo,3e.x-dicarboxylate cis-exo-9b: $\delta_{\mathrm{H}} 3.11(1 \mathrm{H}, \mathrm{d}, J$ $9.5,3-\mathrm{H}), 3.51(1 \mathrm{H}, \mathrm{d}, J 9.5,2-\mathrm{H}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$; 4 singlets for $\mathrm{CH}_{2}=\mathrm{C}(5), \mathrm{CH}_{2}=\mathrm{C}(6)$ and $4-\mathrm{H}$ were observed as follows: $5.13(1 \mathrm{H}, \mathrm{s}), 5.33(1 \mathrm{H}, \mathrm{s})$, $5.46(2 \mathrm{H}, \mathrm{s})$ and $5.51(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 52.5(\mathrm{~d}, 3-\mathrm{C}), 52.7(\mathrm{q}$, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.8 ( $\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}$ ), 58.3 (d, 2-C), 80.4 (d, 4-C), 93.1 (s, 1-C), $103.5\left[\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}(5)\right], 106.8\left[\mathrm{t}, C \mathrm{H}_{2}=\mathrm{C}(6)\right], 143.3(\mathrm{~s}, 5-$ C), $147.5(\mathrm{~s}, 6-\mathrm{C}), 169.5(\mathrm{~s}, \mathrm{CO})$ and $169.7(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} / \mathrm{z} 287,285$ $\left(\mathrm{M}^{+}-\mathrm{OMe}, 1.23,1.32 \%\right)$ and $237\left(\mathrm{M}^{+}-\mathrm{Br}, 4.01 \%\right)$ [Found (HRMS): $m / z 284.9771$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Br}$ : 284.9762].

## Diels-Alder reaction of 1 d with dimethyl maleate

A solution of $1 \mathbf{d}(50 \mathrm{mg}, 0.25 \mathrm{mmol}), 4$-methoxyphenol ( 5 mg ) and dimethyl maleate ( $0.094 \mathrm{~cm}^{3}, 3$ equiv.) in dry benzene ( 1 $\mathrm{cm}^{3}$ ) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 24 h after which it was concentrated. The residue was purified by silica gel column chromatography (hexane-AcOEt, 4:1) to give cis-endo-9d (9.1 $\left.\mathrm{mg}, 14^{1} \%\right)$ and cis-exo- $9 \mathrm{~d}(2.8 \mathrm{mg}, 4 \%)$ as colourless oils together with recovered 1d $(70 \%)$.

Dimethyl 1-acetyl-5,6-dimethylidene-7-oxabicyclo[2.2.1]hep-tane-2endo,3endo-dicarboxylate cis-endo-9d: $\delta_{\mathrm{H}} 2.30(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{CO}$ ), 3.35 ( $1 \mathrm{H}, \mathrm{d}, J 11.6,2-\mathrm{H}$ ), $3.56(1 \mathrm{H}, \mathrm{dd}, J 11.6,5.6,3-$ H), $3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $5.06(1$ $\mathrm{H}, \mathrm{d}, J 5.6,4-\mathrm{H}) ; 4$ singlets for $\mathrm{CH}_{2}=\mathrm{C}(5)$ and $\mathrm{CH}_{2}=\mathrm{C}(6)$ were observed as follows: $5.01(1 \mathrm{H}$, s) $5.19(1 \mathrm{H}, \mathrm{s}), 5.51(1 \mathrm{H}, \mathrm{s})$ and $5.52(1 \mathrm{H}, \mathrm{s}) ; \mathrm{ml}=280\left(\mathrm{M}^{+}, 7.33 \%\right) .249\left(\mathrm{M}^{+}-\mathrm{OMe}, 11.6 \%\right)$ and $237\left(\mathrm{M}^{+}-\mathrm{Ac}, 5.86 \%\right)$.
Dimethyl 1-acetyl-5,6-dimethylidene-7-oxabicyclo[2.2.1]hep-tane-2exo,3exo-dicarboxylate cis-exo-9d: $\delta_{\mathrm{H}} 2.45(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 3.22(1 \mathrm{H}, \mathrm{d}, J 10.0,3-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{d}, J 10.0,2-\mathrm{H})$, $3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$; 5 singlets for $4-\mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}(5)$ and $\mathrm{CH}_{2}=\mathrm{C}(6)$ were observed as follows: $5.05(1 \mathrm{H}, \mathrm{s}), 5.18(1 \mathrm{H}, \mathrm{s}), 5.28(1 \mathrm{H}, \mathrm{s}), 5.35(1 \mathrm{H}, \mathrm{s})$ and $5.36(1 \mathrm{H}, \mathrm{s}) ; m /=280\left(\mathrm{M}^{+}, 2.01 \%\right), 249\left(\mathrm{M}^{+}-\mathrm{OMe}, 4.18 \%\right)$ and $237\left(\mathrm{M}^{+}-\mathrm{Ac}, 1.81 \%\right)$.

## Diels-Alder reaction of 1 e with dimethyl maleate

A solution of $\mathbf{1 e}(50 \mathrm{mg}, 0.25 \mathrm{mmol}), 4$-methoxyphenol $(5 \mathrm{mg})$ and dimethyl maleate ( $0.092 \mathrm{~cm}^{3}, 3$ equiv.) in dry benzene ( 1 $\mathrm{cm}^{3}$ ) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 24 h after which it was concentrated. The residue was purified by silica gel column chromatography (hexane-AcOEt, 4:1) to give cis-endo-9e (7.1 $\mathrm{mg}, 10 \%$ ).
Dimethyl 5,6-dimethylidene-1-nitro-7-oxabicyclo[2.2.1]hep-tane-2endo, 3endo-dicarboxylate cis-endo-9e: $\delta_{\mathrm{H}} 3.44(1 \mathrm{H}, \mathrm{t}, J$ $5.5,3-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.75(1 \mathrm{H}, \mathrm{d}, J 5.5,2-\mathrm{H}), 3.78$
( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}$ ), $5.06(1 \mathrm{H}, \mathrm{d}, J 5.5,4-\mathrm{H}) .5 .10(1 \mathrm{H}, \mathrm{s}), 5.12$ $(1 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{s})$ and $5.37(1 \mathrm{H}, \mathrm{s}) ; m /=283\left(\mathrm{M}^{+}, 9.691 \%\right)$ and $206\left(\mathrm{M}^{+}-\mathrm{NO}_{2}-\mathrm{OMe}, 3.22 \%\right)$.

## Diels-Alder reaction of 1 b with dimethyl fumarate

A solution of $\mathbf{1 b}$ ( $50 \mathrm{mg}, 0.21 \mathrm{mmol}$ ), 4-methoxyphenol ( 5 mg ) and dimethyl fumarate ( $91 \mathrm{mg}, 3$ equiv.) in dry benzene ( $1 \mathrm{~cm}^{3}$ ) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 20 h after which it was concentrated. The residue was purified by silica gel column chromatography (hexane-AcOEt, 4:1) to give 2endo,3exo-9b $(8.6 \mathrm{mg}, 13 \%)$ and $2 e x o, 3$ endo- $9 \mathrm{~b}(4.3 \mathrm{mg}, 7 \%)$.

Dimethyl 1-bromo-5,6-dimethylidene-7-oxabicyclo[2.2.1]-heptane-2endo,3exo-dicarboxylate 2endo, 3exo-9b: $\delta_{\mathrm{H}} 3.40(1 \mathrm{H}$, d, J4.8, 2-H), 3.73 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}$ ), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $3.89(1 \mathrm{H}, \mathrm{d}, J 4.8,3-\mathrm{H}) ; 5$ protons of $4-\mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}(5)$ and $\mathrm{CH}_{2}=\mathrm{C}(6)$ were observed as follows: $5.19(1 \mathrm{H}, \mathrm{s}), 5.21(1 \mathrm{H}, \mathrm{s})$, $5.32(1 \mathrm{H}, \mathrm{s}), 5.38\left(1 \mathrm{H}\right.$, s) and $5.50(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 52.4$ (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.6 (d, $3-\mathrm{C}$ ), 52.7 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 55.9 (d, $2-\mathrm{C}$ ), 80.5 (d, 4-C), 94.1 (s, 1-C), 105.6 [t, $\mathrm{CH}_{2}=\mathrm{C}(5$ or 6$\left.)\right], 105.9$ [t, $C \mathrm{H}_{2}=\mathrm{C}(5$ or 6$\left.)\right], 141.4$ (s, $5-$ or $6-\mathrm{C}$ ), 147.4 (s, 5 - or $6-\mathrm{C}$ ), 169.0 (s, CO) and 170.7 (s, CO); m/z $318.316\left(\mathrm{M}^{+}, 4.43,4.53 \%\right)$, 287, $285\left(\mathrm{M}^{+}-\mathrm{OMe}, 2.72,2.70 \%\right)$ and $237\left(\mathrm{M}^{+}-\mathrm{Br} ; 2.50 \%\right)$ [Found (HRMS): $m /=315.9956$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{Br}$ : 315.9945].

Dimethyl 1-bromo-5,6-dimethylidene-7-oxabicyclo[2.2.1]-heptane-2exo,3endo-dicarboxylate 2exo,3endo-9b: $\delta_{\mathrm{H}} 3.53$ (1 $\mathrm{H}, \mathrm{d}, J 5.2,2-\mathrm{H}), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.81(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 3.91 ( $1 \mathrm{H}, \mathrm{dd}, J 5.6,5.2,3-\mathrm{H}$ ), 5.16 ( $1 \mathrm{H}, \mathrm{d}, J 5.6,4-$ H); 4 singlets for $\mathrm{CH}_{2}=\mathrm{C}(5$ and 6) were observed as follows: $5.07(1 \mathrm{H}, \mathrm{s}), 5.39(1 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}, \mathrm{s})$ and $5.47(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ 52.3 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.6 (d, 2- or 3-C), 52.8 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 59.2 (d, 2- or 3-C), 84.4 (d, 4-C), 92.6 (s, 1-C), 104.1 [t, $\mathrm{CH}_{2}=\mathrm{C}(5$ or 6 )], $107.4\left[\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}(5\right.$ or 6$)$ ], 142.6 (s, 5 - or $6-\mathrm{C}$ ), 144.8 (s, 5 - or $6-\mathrm{C}), 168.9$ (s, CO) and 170.8 (s, CO); m/= $318,316\left(\mathrm{M}^{+}, 2.64\right.$, $2.56 \%), 287,285\left(\mathrm{M}^{+}-\mathrm{OMe}, 5.62,5.96 \%\right)$ and $237\left(\mathrm{M}^{+}-\mathrm{Br}\right.$; $6.62 \%$ ) [Found (HRMS): $m / z 315.9937$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{Br}$ : 315.9945].

## Diels-Alder reaction of 1 d with dimethyl fumarate

A solution of $1 \mathbf{d d}$ ( $30 \mathrm{mg}, 0.15 \mathrm{mmol}$ ), 4-methoxyphenol ( 5 mg ) and dimethyl fumarate ( $65 \mathrm{mg}, 3$ equiv.) in dry benzene ( $1 \mathrm{~cm}^{3}$ ) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 20 h after which it was concentrated. The residue was purified by silica gel column chromatography (hexane-AcOEt, 4:1) to give 2endo, 3exo-9d (3 $\mathrm{mg}, 7 \%), 2$ exo, 3 endo- 9 d ( $2 \mathrm{mg}, 5 \%$ ) as pale yellow oils, trans-11d $(4 \mathrm{mg}, 10 \%)$ as a colourless oil together with recovered 1 d ( 22 $\mathrm{mg}, 73 \%$ ).
Dimethyl 1-acetyl-5,6-dimethylidene-7-oxabicyclo[2.2.1]hep-tane-2endo, 3exo-dicarboxylate 2endo,3-exo-9d: $\delta_{\mathrm{H}} 2.34(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{CO}$ ), 3.34 ( $1 \mathrm{H}, \mathrm{d}, J 4.8,2$ - or $3-\mathrm{H}$ ), 3.67 ( $1 \mathrm{H}, \mathrm{d}, J 4.8,2$ - or $3-\mathrm{H}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$; 5 protons of 4 - and $2 \times \mathrm{CH}_{2}=\mathrm{C}$ appeared as singlets: $5.18(2 \mathrm{H}$, s), $5.23(1 \mathrm{H}, \mathrm{s}), 5.37(1 \mathrm{H}, \mathrm{s})$, and $5.47(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}} 27.2(\mathrm{q}$, $\mathrm{CH}_{3} \mathrm{CO}$ ), $52.2\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}\right), 53.7$ (d, 3-C), 80.9 (d, 2- or $4-\mathrm{C}$ ), 83.2 (d, $4-$ or $2-\mathrm{C}), 94.6$ (s, 1-C), 103.9 [t, $\mathrm{CH}_{2}=\mathrm{C}(5$ or 6$\left.)\right], 105.2$ [t, $\mathrm{CH}_{2}=\mathrm{C}(5$ or 6$)$ ], $142.8(\mathrm{~s}, 5-$ or $6-\mathrm{C}), 143.0(\mathrm{~s}, 5-$ or $6-\mathrm{C})$, $169.2(\mathrm{~s}, \mathrm{CO}), 172.1(\mathrm{~s}, \mathrm{CO})$ and $204.6(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} /=280\left(\mathrm{M}^{+}\right.$, $2.09 \%)$, $249\left(\mathrm{M}^{+}-\mathrm{OMe}, 5.71 \%\right)$ and $237\left(\mathrm{M}^{+}-\mathrm{Ac}, 3.19 \%\right)$ [Found (HRMS): $\mathrm{m} /=280.0942$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}: 280.0946$ ].

Dimethyl 1-acetyl-5,6-dimethylidene-7-oxabicyclo[2.2.1]hep-tane-2exo,3endo-dicarboxylate 2exo,3endo-9d: $\delta_{\mathrm{H}} 2.35(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 3.35(1 \mathrm{H}, \mathrm{d}, J 4.6,2-\mathrm{H}), 3.44(1 \mathrm{H}, \mathrm{dd}, J 5.8,4.6$, $3-\mathrm{H}), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right)$ and 5.12 ( $1 \mathrm{H}, \mathrm{d}, J 5.8$ ); 4 protons for $\mathrm{CH}_{2}=\mathrm{C}(5$ and 6) appeared as singlets at $5.06(1 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{s})$ and $5.37(1 \mathrm{H}$, $\mathrm{s}) ; \delta_{\mathrm{c}} 29.7\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 52.1$ (d, 2- or 3-C), 52.3 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), $52.5(\mathrm{~d}, 2-$ or $3-\mathrm{C}), 83.2(\mathrm{~d}, 4-\mathrm{C}), 103.3\left[\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}(5\right.$ or 6$\left.)\right]$, 106.1 [ $\mathrm{t}, \mathrm{CH}_{2}=\mathrm{C}(5$ or 6 )]; 3 quaternary carbons, $1-, 5$ - and $6-\mathrm{C}$ were observed as singlets at 141.5 (s), 143.2 (s) and 144.0 (s); $165.2(\mathrm{~s}, \mathrm{CO}), 165.4(\mathrm{~s}, \mathrm{CO})$ and $189.3(\mathrm{~s}, \mathrm{CO}) ; \mathrm{m} / \mathrm{z} 280\left(\mathrm{M}^{+}\right.$,
$3.92 \%), 249\left(\mathrm{M}^{+}-\mathrm{OMe}, 12.87 \%\right), 237\left(\mathrm{M}^{+}-\mathrm{Ac}, 8.22 \%\right)$ [Found (HRMS): $m /=280.0975$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}: 280.0946$ ].

Dimethyl 1-acetyl-4,5,6,7-tetrahydrobenzo[ $c$ ] furan-truns-5,6dicarboxylate trans-11d. $\delta_{\mathrm{H}} 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.70(1 \mathrm{H}$, dd, $J$ 17.9, $9.5,4-\mathrm{H}$ ), 2.91 ( 1 H , dd, $J 17.9,9.5,4-\mathrm{H}$ ), 3.03 ( $3 \mathrm{H}, \mathrm{m}, 5-, 6-$ and $7-\mathrm{H}$ ), 3.41 ( $1 \mathrm{H}, \mathrm{dd}, J 18.0,4.2,7-\mathrm{H}$ ), 3.73 ( $6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO} \times 2$ ), $7.28(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{c}} 22.3$ (t, 4 - or $7-\mathrm{C}$ ), $24.8(\mathrm{t}, 7-$ or $4-\mathrm{C}), 26.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CO}\right), 41.6(\mathrm{~d}, 5-$ or $6-\mathrm{C})$, 41.7 (d, 5- or $6-\mathrm{C}$ ), 52.2 (q, $\mathrm{CH}_{3} \mathrm{OCO}$ ), 52.5 ( $\mathrm{q}, \mathrm{CH}_{3} \mathrm{OCO}$ ), 128.1 (s, 3a- or $7 \mathrm{a}-\mathrm{C}$ ), 128.2 ( $\mathrm{s}, 3 \mathrm{a}-$ or $7 \mathrm{a}-\mathrm{C}$ ), 140.2 (d, 3-C), 147.6 (s, l-C), 174.3 (s, CO), 174.4 (s, CO) and 188.4 (s, CO); $\mathrm{m} /=280\left(\mathrm{M}^{+}, \quad 2.30 \%\right), 249\left(\mathrm{M}^{+}-\mathrm{OMe}, 7.03 \%\right), \quad 221$ ( $\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Me}, 5.35 \%$ ) [Found (HRMS): $m / z 280.0943$. Calc. for $\left.\mathrm{C}_{14} \mathrm{H}_{16} 0_{6}: 280.0946\right]$.

Diels-Alder reaction of 1 e with dimethyl fumarate
A solution of $\mathbf{1 e}(50 \mathrm{mg}, 0.25 \mathrm{mmol}), 4$-methoxyphenol $(5 \mathrm{mg})$ and dimethyl fumarate ( $106 \mathrm{mg}, 3$ equiv.) in dry benzene ( $1 \mathrm{~cm}^{3}$ ) was heated in a sealed tube at $120^{\circ} \mathrm{C}$ for 24 h after which it was concentrated. The residue was purified by silica gel column chromatography (hexane-AcOEt, 4:1) to give trans-11e ( 8 mg , $11 \%)$ as a yellow oil.

Dimethyl 1-nitro-4,5,6,7-tetrahydrobenzo[c]furan-trans-5,6dicarboxylate trans-11e: $\delta_{\mathrm{H}} 2.81$ ( 1 H , dd, $J 16.9,3.8,7-\mathrm{H}$ ), 2.98 ( $1 \mathrm{H}, \mathrm{dd}, J 15.9,5.3,4-\mathrm{H}), 3.15(3 \mathrm{H}, \mathrm{m}, 4-, 5-\mathrm{and} 6-\mathrm{H})$, $3.41(1 \mathrm{H}, \mathrm{dd}, J 16.9,3.8,7-\mathrm{H}), 3.74\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO} \times 2\right)$ and 7.31 ( $1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ ); $\mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}\right.$- OMe, $\left.7.49 \%\right), 206$ $\left(\mathrm{M}^{+}-\mathrm{OMe}-\mathrm{NO}_{2}, \quad 24.82 \%\right)$ and (CI) $301 \quad\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$ [Found (HRMS): $m /=$ 252.0513. Calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{7} \mathrm{~N}$ : 252.0507].

## References

I (a) T. Suzuki, K. Kubomura, H. Fuchii and H. Takayama, J. Chem. Soc., Chem. Commm., 1990, 1687; (b) T. Suzuki, K. Kubomura and H. Takayama, Chem. Pharm. Bull., 1991, 39, 2164; (c) K. Ando, N. Akadegawa and H. Takayama, J. Chem. Soc., Chem. Commun., 1991, 1765; (d) K. Ando, C. Hatano, N. Akadegawa, A. Shigihara and H. Takayama, J. Chem. Soc:, Chem. Commun., 1992, 870; (e) T. Suzuki, H. Fuchi and H. Takayama, Heterocycles, 1993, 35, 57; (f) K. Ando, N. Akadegawa and H. Takayama, J. Chem. Soc., Perkin Trans. 1,1993 , 2263; (g) T. Hayashi, Y. Kawakami, K. Konno and H. Takayama, J. Chem. Soc:, Perkin Trans. I, 1993, 2387; (h) T. Suzuki, K. Kubomura and H. Takayama, Heterocycles, 1994, 38. 961; (i) K. Konno, S. Maki, S. Sagara and H. Takayama, Tetrahedron Lett., 1995, 36, 1865.
2 J. S. Ng. J. R. Behling and A. L. Campbell, Tetrahedron Lett., 1988, 29, 3045.
3 L. A. Yanovskaya, A. P. Terent'ev and L. I. Belen'kii, Zh. Obshch. Khim., 1952, 22, 1594 (Chem. Abstr., 1953, 47, 8032h).
4 S. I. Pennanen, Heterocycles, 1976, 4, 1021.
5 G. Olah. S. Kuhn and A. Mlinko, J. Chem. Soc., 1956, 4257.
6 (a) S. P. Forsey, D. Rajapaksa, N. J. Taylor and R. Rodrigo, J. Org. Chem., 1989, 54, 4280; (b) T. R. Kelly, Q. Li and V. Bhushan, Tetrahedron Lett., 1990, 31, 161.
7 (a) M. G. van Campen and J. R. Johnson Jr. J. Am. Chem. Soc., 1938, 55. 430; (b) W. Hertz, J. Am. Chem. Soc: 1945, 67, 1854; (c) A. P. Dunlop, Ind. Eng. Chem. Res., 1948, 40, 204; (d) J. Jurcak, T. Kozluk, S. Filipek and C. H. Eugster, Helv. Chim. Acta, 1983, 66. 222.

8 K. J. Stone, M. M. Greenberg. S. C. Blackstone and J. A. Berson, J. Am. Chem. Soc., 1989, 111, 3659.

Paper 6/03396B
Received 15th May 1996
Accepted 13th August 1996


[^0]:    $\dagger$ The possibility of the formation of 5 d via $\mathbf{1 2 d}$ (3.4-dimethylenefuran, Scheme 3), formed by retro-Diels-Alder elimination of DMAD from 3d, cannot be rejected.

[^1]:    $\ddagger$ When suitable dienophiles coexist, the Diels-Alder reaction of the furan moiety of 1 with them predominates over the desulfonylation of the sulfolene part of 1 . In the case of no suitable dienophiles, the desulfonylation proceeds to form 3,4-dimethylenefuran 12.

